
Chapter 11

Discrimination and classification

11.1 Introduction

Principal component, correspondence and cluster analysis are examples of unsu-
pervised learning methods. Discriminant analysis is, by contrast, an example of a
supervised learning method; only linear discriminant analysis (LDA) is considered
in any detail here. Unsupervised learning methods are geared towards the discov-
ery of structure in data, often in the form of distinct groups. Information may
exist about suspected grouping, but this does not feed into the analysis except that
it may be used for labeling graphs to aid interpretation (Chapters 7, 9, 10). By
contrast, supervised learning methods include information on (suspected) groups
in the data which underpins, and is incorporated into, the mathematics of the
methods. The aims of analysis may be to confirm that the groups are genuinely
distinct; to display group differences graphically; to identify variables that best
discriminate betwen groups, or to allocate cases not in the analysis to an appro-
priate group. This last aim, often called ‘classification’, motivates much of the
more recent methodological development (Hastie et al., 2009).

Mathematically, PCA, CA and LDA, can be viewed in terms of their increasing
order of complexity related to the measure of distance used in analysis. Euclidean
distance is used in PCA, chi-squared distance distance in CA, and Mahalanobis dis-
tance in LDA. Mahalanobis distance is the most complex (Sections 11.2 and C.2.3).

The three methods have, in common, the derivation of linear combinations
of the original variables, ordered by importance, the first two of which are used
for display purposes. Provided n > p (or I > J for CA) there are p (or J)
linear combinations that can be derived. In LDA, where G groups are assumed,
(G − 1) linear combinations can be defined, so that bivariate graphical display is
not available when G = 2 and univariate display is needed (e.g., Figure 11.6). A
brief methodological account of LDA is provided in (Section C.2.3).
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11.2 Mahalanobis distance

Mahalanobis distance (MD) has several uses in archaeology other than for discrim-
ination. Mathematical details are provided in Baxter and Buck (2000), Baxter
(2003: 69–72) and Section C.2.3. An important feature is that MD takes account
of group structure, in particular allowing for the possibility that groups may have
an ellipsoidal shape.

11.2.1 MD and confidence ellipsoids

To illustrate, Figure 11.1 reproduces, with enhancement, Figure 6.1 from Baxter
(2003) that was based on the analysis of lead isotope ratio data.
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Figure 11.1: 90% confidence ellipsoids for the Kea and Seriphos lead isotope fields
using the 208Pb/206Pb and 207Pb/206Pb ratios.

Measures on ore bodies (fields), mined in antiquity for copper, can be char-
acterized by three lead isotope ratios 208Pb/206Pb, 207Pb/206Pb and 206Pb/204Pb.
The idea is that different lead isotope fields can be distinguished on the basis of
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these ratios. Apart from looking at all pairwise possible plots (e.g., Figure 11.3)
they have sometimes been embellished with confidence ellipsoids, as shown. The
boundary of an ellipsoid is determined by points equidistant from the centroid in
terms of MD (Section C.2.3).

Ellipsoids can be used to delineate groups defined using archaeological criteria,
as above, or identified using statistical methods (e.g., PCA or cluster analysis)
plotted on pairs of PCs. Figures 6.4 and 6.5 illustrate this for the Pompeiian
loomweight data of Tables B.3 and B.4 where this was contrasted with the use of
convex hulls in Figure 6.5.

The rationale for using confidence ellipsoids is that the data are samples from
populations where the true extent of the field extends beyond that observed. Con-
vex hulls do not allow for this; confidence ellipsoids represent an attempt to es-
timate the true extent. A potential drawback of their use is that it needs to be
assumed that the population has a (multivariate) normal distribution and this is
sometimes obviously dubious. The construction of confidence ellipsoids, when the
assumption of normality is valid, is discussed in Section C.2.3.

11.2.2 MD, outliers, and allocation to groups

For the Seriphos field there is a case, 33, at the upper extreme of the ellipsoid
and lying just outside it. Visually it seems to belong with the Seriphos field, but
also seems further away from the centroid of that field than that of Kea. This is
confirmed if the Euclidean distance of the case to the two centroids is calculated,
after standardization. The distances are 2.33 and 1.20 for Seriphos and Kea.

If MD is calculated the conclusions are reversed and conform more closely with
the visual assessment of group assignment. The MDs to the centroids of Seriphos
and Kea are 5.76 and 10.29; these are squared quantities so their square-roots
of 2.40 and 3.21 may be compared more directly with Euclidean distance. The
MD calculations depend on both the centroid of a group and its covariance matrix
(Section C.2.3). If the latter is diagonal MD reduces to squared Euclidean distance.
Where the data exhibit strong covariances/correlations MD and Euclidean distance
calculations can produce rather different results, as shown, because MD but not
Euclidean distance allows for the elliptical nature of the groups.

A complication is that MD calculations depend on estimates of the centroid
and covariance matrix, the calculation of which is influenced by the case whose
membership is being assessed. An obvious idea here is to base calculations on what
have been called leave-one-out (LOO) methods, where calculations omit the case
of interest. Applying this idea to case 33 from the Seriphos field, the square-rooted
LOO MD value is 2.66 which exceeds the original value of 2.40, as expected, but
is still closer than the distance to the Kea centroid of 3.21 (calculations of which
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are unaffected). In R, and in the context of LDA, the term leave-one-out cross-
validation is used.

11.3 Linear discriminant analysis – examples

11.3.1 Lead isotope-ratio data – three groups

Data for three lead isotope fields are given in Table B.18 for three ratios. With
G = 3 two linear discriminant functions are defined which lends itself to the display
of results in two-dimensional plots. Figure 11.2 contrasts the results of applying
PCA and LDA to the three groups using all the ratio data. Remember that LDA
uses the information about groups to maximize the separation between them.
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Figure 11.2: Principal component and linear discriminant analyses of the lead
isotope-ratio data of Table B.18 using all three fields.

From Figure 11.1 it was seen that a plot based on two ratios is more than ad-
equate to establish the fact that the Seriphos and Kea fields are distinct. This is
also a feature of the PCA and DA plots. The presence of the Lavrion field compli-
cates matters; it is widely spread out on the PCA plot, showing some overlap with
the Seriphos field and more with that for Kea. The LDA, by contrast successfully
separates the three fields apart from one case each for the Kea and Lavrion fields
whose group membership is in doubt. This is a further clear illustration that PCA
and LDA can produce noticeably different results.

In practice, preliminary data inspection is sensible. A pairs plot of the ratios is
shown in Figure 11.3. It is clear that all three fields can be separated using just the
first two ratios; plots involving the third ratio confuse matters. This is reflected in
Figure 11.2 where PCA fails to show the field separation evident from the simple
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Figure 11.3: A pairs plot for the lead isotope ratio data. Labeling is as in Fig-
ure 11.2, green triangles for Lavrion, blue squares for Kea, red circles for Seriphos.

analyses. This points to the potential importance of variable selection when using
multivariate methods; the problem is that ‘non-structure-carrying’ variables can
obscure the lessons to be learned from variables that are revelatory of structure.

This will not be pursued in detail here; some of the issues are discussed in
Baxter (1994b). Examples there show that variable selection can improve the
success of allocation, though selection of the best discriminating variables is not
guaranteed. With two groups LDA can be formulated in terms of linear regression,
with methods based on stepwise selection procedures widely available in software
packages. Analogous stepwise procedures for LDA with more than two groups are
available in software packages such as SPSS and SAS. Stepwise selection methods
have been subjected to considerable criticism (failure to find ‘optimal’ solutions;
lack of generalizability; etc.). More modern methods are discussed in Chapter 3
of Hastie et al. (2009) but have had few archaeological applications.
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11.3.2 Neolithic pot dimensions

For a second example data from Table 1 of Madsen (1988b: 18), reproduced in
Tables B.19 and B.20, are used. They consist of 16 measurements on eight profile
points from pottery vessels from the the Early and earlier Middle Neolithic TRB
culture in Denmark.

Figure 11.4: Measurement points of Danish Neolithic pot profiles. (Source: Madsen
1988b: 16, after E.K.Nielsen.)

Each profile point is represented by vertical and horizontal components, so
there are 16 measurements in total (see Figure 11.4). The plots were classified
into three vessel forms, funnel beakers, bowls and flasks, with sample sizes of
81, 21 and 16. Classification was based on archaeological criteria and it was of
interest to see if this could be reproduced using multivariate methods. It is obvious
from simple bivariate plots (e.g., Madsen 1988b: 17) that flasks are dimensionally
distinct, and sensible to separate these out at an initial stage of analysis, though
they are retained for illustrative purposes in some of the examples to follow.

Madsen (1988b) concentrates on analyses of the funnel-beakers using PCA,
whereas we use the data to illustrate aspects of LDA. Initial analysis was domi-
nated by a size component – undesirable in the context of the aims of the analysis.
Madsen discusses various ways of removing this and we follow him in scaling ver-
tical measurements to pot height and horizontal measurements to rim width.
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Three groups

Figure 11.5 contrasts PCA and LDA analyses of the data for the three types1.
Both analyses separate out the flasks from the other forms, the separation being
much clearer for LDA. Neither analysis separates out the other two forms, though
LDA is a bit better. Both analyses suggest a small but distinctive group of six or
seven bowls.
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Figure 11.5: Principal component and linear discriminant analyses of the Neolithic
pot dimensions of Tables B.19 and B.20 using all three vessel types.

Two groups

It is often easier to discern pattern using a small number of groups for any one
analysis, and Figure 11.6 repeats the previous analysis after omitting the flasks.
There is only one discriminant function, so graphical display must be accomplished
using methods other than bivariate plots. Other options than that used, such as
boxplots, are available but don’t show the individual data points. The message
is the same as that derived from the three-group analysis, namely that with the
measurements used funnel beakers and bowls are not well discriminated. Using
LOO classification 85/102 (83%) of cases are successfully classified. The resubsti-
tution method,where statistics are influenced by the case to be classified, produces
over-optimistic assessments.

A more informative way of assessing success, though more time-consuming to
digest, is to examine the posterior probabilities of group membership, using leave-
one-out calculations. These are obtained from the lda function in R with the

1Case 112 (Id. 237 in Table B.20) was found to be a clear outlier in preliminary analysis and
omitted from this analysis.
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Figure 11.6: Principal component and linear discriminant analyses of the Neolithic
pot dimensions of Tables B.19 and B.20 using the first two types, beakers and bowls.

argument CV = TRUE. The outcome for a subset of the funnel-beaker and bowl
data is shown in Table 11.1.

If a ‘hard’ classification is needed a case would be assigned to the type with
highest probability. With the exception of vessels 307, 308, 311 and 329 the funnel-
beakers would mostly be convincingly classified as such, with probabilities close
to 1. Four beakers are classified as bowls, beaker 307 with a probability of 0.45 of
being a beaker and 0.55 of being a bowl only marginally so; the others are more
convincing. Of the six bowls shown, only two are classified as such, the remaining
four being classified as beakers with high or quite high probabilities.

A limitation of this kind of analysis is that results are presented in terms of
relative probabilities and assume that cases must belong to a group in the analysis.
This need not be the case; for example outliers may occur, or classes not recognized
in the analysis may be represented. In these circumstances a case will be assigned
to one of the assumed groups, possibly with high probability, even though the
reality is that it belongs to none.

Often this kind of issue will be recognized in preliminary data analysis, or from
the LDA itself. More formal methods exist; using normality assumptions MDs
can be converted to absolute probabilities that allow a more realistic assessment
of likely group membership. This is discussed in Section C.2.3.
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Predictions
Id. Actual Predicted Beaker Bowl
...

...
...

...
...

307 Beaker Bowl 0.45 0.55
308 Beaker Bowl 0.25 0.75
311 Beaker Bowl 0.14 0.86
312 Beaker Beaker 0.98 0.02
320 Beaker Beaker 0.93 0.07
321 Beaker Beaker 0.89 0.11
323 Beaker Beaker 0.98 0.02
324 Beaker Beaker 1 0
325 Beaker Beaker 0.92 0.08
326 Beaker Beaker 0.95 0.05
327 Beaker Beaker 0.99 0.01
328 Beaker Beaker 0.99 0.01
329 Beaker Bowl 0.33 0.67
336 Beaker Beaker 0.87 0.13
3 Bowl Bowl 0.03 0.97

33 Bowl Beaker 0.77 0.23
59 Bowl Beaker 0.78 0.22
60 Bowl Beaker 0.97 0.03
61 Bowl Bowl 0.01 0.99
131 Bowl Beaker 0.98 0.02

...
...

...
...

...

Table 11.1: Cross-validated estimates of the relative probabilities of belonging to a
group, after a two-group LDA for a subset of the Danish Neolithic pot data.

11.3.3 Practicalities

The normality assumption

The examples touch on a number of practical issues. Among them is the ques-
tion of normality – it is sometimes incorrectly asserted that LDA requires the
assumption that groups have a multivariate normal distribution. In fact Fisher’s
(1936) original derivation of LDA, subsequently developed by Rao (1948), made
no such assumption. A sensible measure of group separation is defined and op-
timized mathematically to determine the discriminant functions. For descriptive,
graphical analysis normality is not assumed. If normality can be assumed then
LDA has some optimal properties, but the lack of normality does not necessarily
compromise its practical utility. Normality does need to be assumed for proba-
bility calculations of the kind described in the previous section and Section C.2.3
but, as some of the examples suggest, it can be questionable.
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The equal covariance assumption – quadratic discriminant analysis

Applications so far have assumed that groups are sampled from separate popula-
tions having equal covariance matrices, allowing their estimates to be pooled and
leading to LDA. If the assumption is relaxed this gives rise to quadratic discrim-
inant analysis (QDA) (Venables and Ripley, 2002: 333–334) which, as the name
suggests, leads to quadratic boundaries between groups. A practical drawback of
QDA is the need to estimate separate covariance matrices within groups, which
requires more parameters and may be problematic with a reasonable number of
variables to deal with, so demands more data than LDA.

11.3.4 Example - Steatite compositions

The extended example in this section illustrates the kind of output produced by
R. It is based on compositional data for samples of steatite (soapstone) analyzed
by Truncer et al. (1998) in order to see if the method of chemical analysis used
succeeded in distinguishing between quarry sources more effectively than had pre-
viously been the case. The data are given in Tables B.21 to B.23.

There are six quarry sources used here with sample sizes between 24 and 31;
there was a considerable number of measurements below the level of detection and
only 6 of the 17 variables that were measured, for which complete information was
available, are used. The analysis in the original paper is not emulated, the data
are useful for illustrating aspects of LDA in this section, and classification trees in
Section 11.4.2. Data are logarithmically transformed, to base 10, before analysis.

The transformation St.log <- log10(steatite) is applied to the 159 × 6
data matrix, steatite. The vector of quarry identifiers is named St.type. With
this in place

library(MASS)

St.lda <- lda(St.log, St.type, CV = FALSE)

St.ld <- predict(St.lda)$x

sets up an object St.lda that can be used for interrogating the analysis, and St.ld

which is used for plotting purposes. The obvious thing to do, and one of the main
purposes of the exercise, is to look at the data graphically using a plot based on the
first two functions, as in Figure 11.72. This shows that discrimination is far from
perfect. Visually Lawrenceville seems most distinct, but there is overlap between
the predictions for all the quarries, particularly Susquehanna.

This can be investigated more closely using the ‘confusion’ table, which shows
the predictions for each quarry. In the lda function the argument CV = FALSE

2This is obtained using eqscplot(St.ld[,1], St.ld[,2]) where the arguments governing
the labeling have been omitted.
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Figure 11.7: LDA of the steatite compositional data of Tables B.21 to B.23.

was used. This is the default; if CV = TRUE is used LOO cross-validation is im-
plemented. This provides output in a different form; in particular St.lda$class

provides the LOO predictions and this can be cross-tabulated with St.type to get
the ‘confusion’ table (Table 11.2). The overall ‘success’ of classification is 113/159
= 71%, where 113 is the sum of the diagonal cells. If St.lda$posterior is ac-
cessed this provides posterior probabilities for the classes, of the kind shown in
Table 11.1. The success of classification is summarized in percentage terms for
each quarry in the third column of Table 11.3. This suggests that, for example,
the classification for Boyce Farm and Orr is not very impressive.

In fact these assessments may be rather pessimistic. In attempting to dis-
criminate between all six groups simultaneously the discriminant functions can be
thought of as ‘averaging’ over all the groups, producing results that fail to show
that good discrimination between pairs of groups may be possible. An alterna-
tive approach is to undertake LDAs on pairs of quarries. This is illustrated in
Table 11.3 where the LOO and resubstitution success rates for each possible pair
are given.

For the pairs the success rates are mostly noticeably greater than the global
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Quarry Predicted quarry
B Ch Cl L O S n

B 13 1 2 0 4 4 24
Ch 0 23 0 2 0 1 26
Cl 2 0 19 0 0 5 26
L 0 5 0 24 0 2 31
O 1 0 2 1 15 6 25
S 2 2 4 0 0 19 27

Table 11.2: The ‘confusion’ table for LDA of the steatite data.

Pairwise comparisons
Quarry n CV (%) B Ch Cl L O S

Boyce Farm 24 54 98 90 96 82 88
Chula 26 88 98 90 84 94 89

Clifton 26 73 92 94 93 88 85
Lawrenceville 31 77 100 90 95 96 90

Orr 25 60 86 98 92 96 90
Susquehanna 27 70 90 96 87 93 94

Table 11.3: Classifications from LDAs of the steatite compositional data. The CV
is the percentage correctly classified using LOO methodology. The second part of
the table shows the success rate for pairwise comparisons; the upper triangle is for
LOO calculations, the lower triangle for the resubstitution approach.

rates and in excess of 90%. Although not pursued in detail here, this is because
the variables are weighted rather differently in the discriminant functions for pairs,
both from each other and from the global analysis.

11.4 Classification trees

11.4.1 Basic ideas

Classification trees have been used intermittently in archaeological applications
(Baxter, 2003: 116–118). They are an attractive alternative supervised learning
method for problems often tackled using (LDA), if sample sizes are large enough.
Venables and Ripley (2002: 331) state that ‘classical methods of multivariate
analysis [including LDA] have largely been superseded by methods from pattern
recognition’, and classification trees are one such ‘modern’ alternative.

Many of these modern methods are computationally complex, rather ‘black-
boxy’, and difficult for the non-specialist to understand. Classification trees, by
contrast, are conceptually simple and result in economical and elegant displays of
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the results that – with some caveats to be entered – can be readily understood.
Output is typically in the form of a tree diagram. The data are initially treated
as a single group that is successively sub-divided until some stopping criterion is
satisfied. The aim is to identify those variables that best separate the groups. This
is best illustrated by example in Section 11.4.2. Technical aspects of the method
are discussed in Section 11.5 with a further example in Section 11.6.

11.4.2 Example – Steatite compositions (continued)

The data on steatite compositions from Tables B.21 to B.23, used to illustrate
LDA in Section 11.3.4, are used. Figure 11.8, the same as Figure 9.2 in Baxter
(2003), shows the outcome of a classification tree analysis of the data.

|
V>=73.45

Sc< 11.84

Sc>=18.27

Co>=89.21

Fe< 8.93e+04

V>=94.1

Cr< 2823

Ch
0/21/2/1/0/1

Cl
4/0/8/0/1/1

B 
15/0/0/0/1/1

O 
2/0/0/0/7/0

O 
1/0/1/0/10/0

Cl
0/0/8/0/0/0

S 
2/1/6/0/3/21

L 
0/4/1/30/3/3

Figure 11.8: A classification tree for the steatite compositional data.

The starting point, the root node, based on all the data before group separation,
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is associated with a measure of purity (Section 11.5). The root node is split into
two groups/nodes on the basis of one variable, in order to increase the purity of the
tree by as much as possible. This (binary) splitting continues until some stopping
criterion is met.

Using the variable V (Vanadium) cases having V > 73.45 go to the left in the
first split. It happens that the node to the right, according to the criterion used,
is a terminal node and no further attempt is made to split it. The numbers below
a terminal node show how many cases from each group are assigned to that node;
30/41 come from the Lawrenceville quarry which is the dominant group identified
by the label L for the node. A pure terminal node is one where all the cases come
from a single group, and the ideal is that all terminal nodes are pure.

To the left, the second split is based on values of Scandium (Sc) that are less
than 11.844 and produces a second terminal node dominated by the Chula (Ch)
quarry. The third split is also based on Scandium, this time using the higher
values, Sc > 18.2695, without producing any further terminal nodes. As well as
the fact that a variable can be used more than once in the splitting process, note
that there are more terminal nodes (eight) than there are groups in the data. The
quarries Clifton (Cl) and Orr (O) each dominate two terminal nodes; this can
indicate either that there are distinct sub-compositions within the groups, or that
they are not compositionally well-defined.

Most of the terminal nodes are not pure, so that the classification is less than
perfect. The classification success can be assessed at 78% which compares favor-
ably with that for LDA, using leave-one-out classification, of 72%.

11.5 Methodology

The preceding section describes the bare outlines of the methodology, which is con-
ceptually straightforward. Implementation is computationally intensive, requiring
a number of choices to be made on the way. A brief, but more technical, discussion
of further aspects is provided in this section.

If the sample of size n is partitioned into G classes, with ni cases in class i,
the root node is defined by G probabilities (p1, p2, . . . , pG) where pi = ni/n. A
node is labeled according to the most dominant class. The misclassification rate
at a node is the number of cases not in the dominant class. For the root node
call this R0. Splitting occurs as discussed in the previous section and criteria for
what constitutes a terminal node need to be defined. In the example no attempt
has been made to split a node with fewer than 20 cases and a terminal node must
contain at least 7 cases.

The impurity of a node can be defined in different ways; in the example the
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Gini index
1 −

∑
i

p2i

was used. For a pure node this takes the value zero, and the smaller the value of
the index the purer the node. Assume continuous variables are used. Any one of
these, X say, can be ordered as (x(1) x(2) . . . x(n)). For i = 2, . . . , n, splits may
be contemplated such that cases with values less than x(i) are separated out from
cases with values greater than or equal to x(i). New nodes are defined by the two
subsets of cases thus defined, and the impurity of these, and hence their average
impurity, measured. All possible splits for all variables are examined and the split
that most reduces the average impurity is chosen. Each new node is treated in a
similar way and the process continues until terminal nodes are reached.

Clearly the appearance of the final tree depends on a variety of choices, in-
cluding that of the smallest node for which a split is allowed and the minimum
size of the terminal node. An understanding of this, and other aspects of the final
appearance that can be controlled by the user, is aided by looking at the code used
to obtain Figure 11.8.

library(rpart)

z.rp <- rpart(St.quarry ~ Co + Cr + Fe + Mn + Sc + V,

data = St.data, cp = .03, minsplit = 20, minbucket = 7)

plot(z.rp, uniform = T, margin = .05)

text(z.rp, use.n = T, cex = .7)

The rpart package needs to be loaded. In the arguments to the rpart function
minsplit and minbucket specify the minimum node size that can be split, and the
minimal terminal node size. The values given are the defaults; varying them will
change the appearance of the tree. The argument cp is a complexity parameter (of
which more below) for which the default is 0.01; reducing this will result in a larger
tree relative to the default, and increasing it will produce a smaller tree. For more
detailed information see the R help on rpart.control. The plot function prints
the tree. For large trees and/or those with many groups obtaining a satisfactory
appearance usually requires some experimentation. The last two lines of code use
arguments that affect the appearance; see the R help on plot.rpart for more
detail.

It is possible to get satisfactory results by ‘playing around’ with the arguments
in the rpart function, but different analysts may arrive at different trees. A more
‘principled’ approach to determining tree size is available in the rpart package. If
cp is too small the data may be ‘over-fitted’ and give an over-optimistic assessment
of the success of the classification. The tree in Figure 11.8 originally had 11
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terminal nodes using cp = .001 rather than the eight terminal nodes using cp =

0.03.
Cost-complexity pruning can be used to reduce the size of the tree. Let R(T )

be the number of misclassifications in a tree of size T as measured by the number
of terminal nodes, and let C be the cost-complexity parameter defined by cp. A
cost-complexity measure of the form

RC = R(T ) + CTR0

can be defined. As C increases, and leaves are pruned, T will decrease and R(T )
will increase. The degree of pruning is chosen to minimize RC .

To choose C cross-validation is used. The data are split into 10 groups of
roughly equal size. Nine of the groups are used to grow a tree and it is tested
out on the remaining group to obtain a measure of the error involved. This can
be done in 10 ways and the results averaged to get an estimate of the error and
its standard deviation. Results may be summarized graphically, as in Figure 11.9
based on the unpruned tree which, after pruning, led to Figure 11.8, obtained
using plotcp(z.rp).
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Figure 11.9: A plot of error-rate against tree size as determined by cp, based on
10-fold cross-validation. It leads to a pruned tree of size 8 which is that shown in
Figure 11.8.

Plotted points show the mean number of errors across the 10 analyses divided
by R0 (i.e. the vertical axis is scaled to lie between 0 and 1), with ‘one standard
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error’ bars for each mean. The horizontal reference line is located at the mean
error for the largest tree plus one standard error. The tree selected is the smallest
one whose mean error lies below and within one standard error of the line. In this
case this rule results in the unpruned tree of size 11 being pruned to one of size
8. Incidentally, the choice of cp in the original call to rpart can be thought of as
controlling pruning of the tree that takes place as the tree is grown; larger values
of cp have the effect of preventing the growth of branches likely to be ‘lopped-off’
when using the above selection procedure.

To the best of my knowledge this ‘rule’ is not justified theoretically. Therneau
and Atkinson (1997: 13), the originators of the rpart package, observe that this
method has proved good at screening out ‘pure noise’ variables. That is, the justi-
fication for its use is empirical. Classification trees can be viewed as an alternative
to variable selection methods in LDA, with several potential advantages. One is
the transparency of the method. Others are the fact that the method can handle
missing data (illustrated in Baxter and Jackson, 2001) or mixed data, and that
it is not necessary to worry about data transformation because of the monotonic
relationship between raw and log-transformed data.

11.6 Example 2 - North Apulian pottery

This analysis is based on that shown (with presentational modifications) in Figure
5 of Gliozzo et al. (2013). Chemical compositional data were available for pottery
from four late antique/early medieval sites (4th to early 7th centuries AD) in
northern Apulia, Italy. The main interest lay in seeing if two of the sites, Herdonia
and Canusium, produced pottery that was chemically distinguishable, but similar
data from two other sites, Posta Crusta and San Giusto, had previously been
investigated and the opportunity was taken to compare these with the newer data
sets. Data on two kinds of pottery were available, coarse table wares and fine
painted wares, and a 65× 36 table of results for the latter type – split into groups
defined by the four sites – is used here for further illustration. The data are similar
in nature to the previous example but far more variables are involved (Tables B.24
and B.25).

A classification tree is shown in Figure 11.10. Sample sizes for some of the
sites are quite small so splits of nodes with more than 10 cases, as opposed to the
default of 20, were allowed. This had the effect of making it much clearer that the
productions of the sites could largely be distinguished in terms of their chemistry.

What is worth noting about this is that only five splits are needed, involving
five of the 36 variables, a considerable ‘saving’ in terms of economy of description
and comprehension. There are six terminal nodes of which four are pure; two
sites, Herdonia and San Giusto split into two mostly quite small groups which are,
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however, almost completely distinct from other sites. Of the 65 cases just 3 are
misclassified, so the success of the classification is 95%.

|Yb>=2.2

Cu>=30.5

Ni< 51.5 Ba< 379.5

Al2O3>=13.52

C 
18/1/0/1

H 
0/3/0/0

H 
0/11/0/0

SG
1/0/0/6

P 
0/0/20/0

SG
0/0/0/4

Figure 11.10: A classification tree for the northern Apulian fine ware pottery data.

Given the success of classification there is little point in comparing it with the
results from pairwise comparisons. Results reported in Gliozzo et al. (2013) for the
coarse ware data noted that the success rate for classification with all four sites in
the analysis was 87%. For pairwise analyses the success rate varied between 90%
and 96%, with only one or two variables needed to achieve this, except for the
Posta Crusta and San Giusto comparison, which needed three. As with the fine
wares, therefore, chemical separation between the sites for the coarse wares wss
good; that in the latter case pairwise comparisons improved on the global analysis
mirrors what was observed for the LDA of the steatite compositional data, and for
analogous reasons.
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11.7 R notes

Figure 11.1

The data sets Kea, Seriphos and Lavrion need to have been created; the last of
these is not used for this figure, but is used in later examples.

library(car)

K <- Kea; S <- Seriphos; L <- Lavrion

plot(K[, 2], K[, 1], type = "n")

points(K[, 2], K[, 1]); points(S[, 2], S[, 1])

lines(dataEllipse(K[, 2], K[, 1], levels = c(0.9), plot.points = F,

center.pch = 17, center.cex = 2))

lines(dataEllipse(S[, 2], S[, 1], levels = c(0.9), plot.points = F,

col = "black", center.pch = 17, center.cex = 2))

If the dataEllipse function is used separately from the lines function it may be
necessary to include other arguments to get the desired effect: see the help facility.
The levels argument specifies that a 90% confidence ellipsoid is required; other
arguments dictate the color, plotting character and size of the group centroids and
are optional.

Figure 11.2

The three data sets are combined into LKS using the rbind function. The ob-
ject SymLKS needs to be created and defines the plotting symbols used in the pch

argument in eqsc but also doubles as the group identifier needed for the second ar-
gument of lda (presentational arguments are not shown). In the predict function
the argument dim = 2 extracts two functions (the maximum possible with three
groups). This allows a single argument, LKS.ld, to define the plotting positions;
in general, if more than two functions are extracted, the two columns to be used
for plotting need to be listed separately.

library(MASS)

LKS <- rbind(L, K, S)

LKS.lda <- lda(LKS, SymLKS, CV = F)

LKS.ld <- predict(LKS.lda, dim = 2)$x

eqscplot(LKS.ld)
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LKS.pca <- prcomp(scale(LKS))$x

x1 <- LKS.pca[, 1]; x2 <- LKS.pca[, 2]

eqscplot(x1, x2)

Figure 11.5

The data of Tables B.19 and B.20, excluding Id. and Type, are held in TRB.data.
They need to be transformed in the manner described in the text, as follows, with
the result in TRB.trans.

z1 <- TRB.data[, c(1, 3, 5, 7, 9, 11, 13, 15)]

z1 <- z1/z1[, 1]

z2 <- TRB.data[, c(2, 4, 6, 8, 10, 12, 14, 16)]

z2 <- z2/z2[, 1]

TRB.trans <- cbind(z1[, -1], z2[, -1])

Nothing really new is illustrated in the PCA below. An obvious outlier, case
112, was identified in preliminary analysis, and is omitted as shown. This needs to
be done, also, for the previously created colors (ColTRB) and plotting characters
(SymTRB) and this is shown in the call to eqsc for emphasis; other presentational
arguments and the legend are omitted.

TRB.pca <- prcomp(scale(TRB.trans[-112, ]))$x

x1 <- TRB.pca[, 1], x2 <- TRB.pca[, 2]

eqscplot(x1, x2, col = ColTRB[-112], pch = SymTRB[-112])

The commands for LDA are shown for completeness, but introduce nothing
new.

TRB.lda <- lda(TRB.trans[-112, ], SymTRB[-112], CV = F)

TRB.ld <- predict(TRB.lda, dim = 2)$x

eqscplot(TRB.ld, col = ColTRB[-112], pch = SymTRB[-112])

Figure 11.6

The left-hand graph introduces nothing new; all that needed is to select the first
two types (rows 1 to 102) from the original data and labeling variables, so anal-
ysis is based on TRB.trans[c(1:102), ] for the PCA. The first two lines in the
following code set up the results for the LDA plot, but the usual bivariate plots
are not available because there are only two groups and one discriminant function.
The remaining code produces the plot shown in the right-hand side of the figure.
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library(MASS)

TRB.lda <- lda(TRB.trans[c(1:102), ], SymTRB[c(1:102)], CV = F)

TRB.ld <- predict(TRB.lda, dim = 1)$x

id <- ifelse(SymTRB2 == 15, 2, 1)

plot(id, TRB.ld, xaxt = "n")

axis(1, at = c(1:2), labels = c("funnel beakers", "bowls"))

The variable id provides a convenient label for the two groups using the ifelse
function. Most of the plotting arguments are omitted. The xaxt = "n" suppresses
printing of the x-axis since its appearance is not as needed. It is replaced using the
axis function. The first argument, 1, specifies the side at which the new axis is to
be placed (bottom – see the help for axis for other placements); the at argument
provides the locations of new labels (replacing 1 and 2 in the original plot) whose
names are given in the labels argument.

Table 11.1

Replace the argument CV = F with CV = T in the above code; then

posteriors <- round(cbind(id, TRB.lda$class, TRB.lda$posterior), 2)

will produce the original and predicted groupings (id and TRB.lda$class), with
the posterior probabilities, TRB.lda$posterior, rounded to two decimal places.
This is for all the data; a certain amount of (straightforward) editing is needed to
get it in the format presented in the text.

The analyses for the steatite data use more groups but involve nothing new in
what is needed for the plot.

189


